欢迎访问精密陶瓷生产加工商——东莞市钧杰陶瓷科技有限公司

精密陶瓷制造商

氮化铝陶瓷、macor、氧化铝陶瓷生产加工企业

全国服务热线

13412856568
当前位置: 首页 > 常见问题 >

如何解决氧化锆陶瓷的韧性问题

文章出处:http://www.jundrotc.com/wenda/477.html人气:628时间:2021-04-22

因为它的耐高温,耐腐蚀等等优势。氧化锆陶瓷在日常生活中可能要求不是很高,但是在工业要求来说应该是比较高的,工业化的要求需众所周知氧化锆陶瓷因为它的其特性问题,所让人广泛利用。要氧化锆陶瓷韧度要求极大,那么我们应该如何增加氧化锆陶瓷的韧性呢?
我们钧杰陶瓷作为陶瓷界的知识小宝库,不仅技术是陶瓷界一流的存在,设备也是在同行中绝对的存在。接下来就让我们钧杰陶瓷告诉大家一些增加氧化锆陶瓷的专业方法吧。
陶瓷材料在应用中的致命弱点是其脆性,因此,近年来,增韧氧化锆陶瓷被给予了更多关注,氧化锆增韧材料通常用于制作模具,研磨介质,切削刀具等。氧化锆陶瓷结构件
氧化锆陶瓷的相变有体积变化和形状改变,通常出现剪切形变。新相与旧相共用的界面保持严格的位相关系,在1000℃左右发生的四方单斜相变,体积膨胀率3%到7%,纯度高的氧化锆材料更加明显,如果用此种变体来制作陶瓷,容易碎裂。因此,要考虑用于稳定相的稳定剂的种类与剂量的加入,由于体积膨胀产生裂纹,一般制造纯氧化锆烧结体是很困难的。
应力诱导相变对温度的敏感性导致氧化锆的稳定性随温度升高而增高,相变韧性失效,致使强度和韧性急剧下降,这一缺陷使得增韧氧化锆陶瓷在高温环境下的应用受到限制。复合化是解决此问题的有效途径。所选增韧相主要为高强度高模量的晶须,片晶,纤维以及颗粒。
其中最早尝试的是碳化硅晶须,这类复合材料的强度和断裂韧性取决于氧化锆的稳定程度,晶须含量和性能以及晶须和基本界面的结合强度。适当控制稳定剂Y2O3的含量,并选择性能优良的晶须,有效控制残余热应力和界面结合力。
适当控制稳定剂Y2O3的含量,并选择性能优良的晶须,有效控制残余热应力和界面结合力[如在碳化硅晶须表面进行Al203、莫来石涂层处理,可使1 5%(体积分数)碳化硅/TZP复合材料的室温强度由无涂层的700MPa分别提高至1000MPa和1450MPa,能使复合材料中晶须补强与相变增韧产生协同增韧的效果,提高增韧补强效果。
在这类复合材料中,晶须增韧主要机制为裂纹偏转、晶须桥联、界面解离、晶须拔出以及应力按模量转移等。晶须在产生以上增韧作用的同时,还将和相变增韧发生协同作用,晶须的桥联增韧和裂纹偏转增韧将延长裂纹扩展长度,使可相变体积分数增大,同时相变增韧产生的体积膨胀加强了晶须/基体界面结合,有利于载荷转移效应的实现。氧化锆陶瓷结构件
利用SiC晶须与TZP复合虽然取得了较好的效果,但由于SiC与TZP的热失配在基体中产生较大的应力.使室温强度下降,加之晶须的毒性及在基体中的分散不均匀,使这种方法受到了一定的限制。
于是,人们尝试用高强度、高弹性模量的刚性颗粒如SiC、Al203等用于与TZP复合。Ding|通过对20%(体积分数)碳化硅和TZP复合材料的微观结构及力学性能的研究发现,尽管由于SiC的较低的热膨胀系数和较高的弹性模量降低了t—Zr0。的可相变体积分数,削弱了相变效应,但SiC颗粒对裂纹的偏转效应使材料的韧性提高。在1000℃时单相钇稳定氧化锆的强度只有室温的13%,但碳化硅/TZP的强度是室温的31%。
我们钧杰陶瓷作为新时代的代表,不仅仅依靠的是我们的技术和一流的先进设备,我们把一线的生产员工的安全放置在第一位。员工的安全是我们公司的保障。如果后期大家还有什么需要我们服务的请在我们的官方留言.

咨询

电话

咨询热线

0769-82913501

24小时热线

13412856568

微信

公司二维码

关注我们

邮箱

公司邮箱

xwj@jundro.com